Find the equation of the linear function represented by the table below in slope-intercept form.
- To get the equation of a line, you need a point and a slope.
- Choose two points from the chart and find the slope of the line through those two points. (-2,-2) and (3,-7) -7 - (-2) ————— = slope {change in y-coordinates over change in x-coordinates} 3 - (-2) -5 —— = slope {subtracted in numerator and denominator} 5 slope = -1 Take the slope, with one of the points, and substitute into slope-intercept form. (-2,-2) , slope = -1 y = mx + b {slope-intercept form} -2 = -1(-2) + b {substituted -2 for x, -2 for y, and -1 for m} -2 = 2 + b {multiplied -1 by -2} b = -4 {subtracted 2 from each side} y-intercept = -4 Substitute the slope, -1, and the y-intercept, -4, back into slope-intercept form. y = mx + b {slope-intercept form} y = -1x - 4 {substituted -1 for m, and -4 for b} y = -x - 4 is the function represented by the table Ask Algebra House
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
Latest Videos
Archives
February 2025
|