The graph of an equation in three variables, such as, $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$ where A, B, and C are not all zero, is a plane.

Algebra 3
Section 3.5
Systems with Three Variables

To graph an equation with three variables, using intercepts:

- find the x, y, and z intercepts \{by substituting 0 in for the other variables\}
- connect the three intercepts with a triangle

When a line intercepts an axis, the value of the other variables are zero.

Graph the equation:

$$
x+y+z=3
$$

x-intercept

$x+y+z=3 \quad$ \{the equation\}
$x+0+0=3$ \{substituted 0 for y and $z\}$
$x=3$ \{combined like terms\}
coordinates are (3, 0, 0)
y-intercept
$x+y+z=3 \quad$ \{the equation\}
$0+y+0=3$ \{substituted 0 for x and $z\}$
$y=3$ \{combined like terms\} coordinates are $(0,3,0)$

$$
0+0+z=3 \quad\{\text { substituted } 0 \text { for } x \text { and } y\}
$$

$$
z=3 \quad \text { \{combined like terms }\}
$$

coordinates are (0, 0, 3)

You can show the solutions of a three variable system, graphically, as the intersection of planes.

A system of three equations may have:
one solution: one point of intersection
no solution: no point of intersection \{parallel planes\}
infinite solutions: intersect in a line \{containing an infinite number of points\}

Steps to solve system of three linear equations:

1.) choose any two equations and eliminate one variable
2.) choose two different equations and eliminate the same variable
3.) use the two new equations to solve for a variable
4.) keep substituting until all variables are solved for

$$
\begin{gathered}
\text { Example } \\
-x+3 y+z=-10 \\
3 x+2 y-2 z=3 \\
2 x-y-4 z=-7
\end{gathered}
$$

$$
\text { 1. } \begin{aligned}
-x+3 y+z & =-10 \\
3 x+2 y-2 z & =3 \\
2 x-y-4 z & =-7
\end{aligned}
$$

3.) use the two new equations
to solve for a variable
1.) choose two equations and eliminate one variable

$$
\begin{array}{r}
3 x+2 y-2 z=3-3 x+2 y-2 z=3 \\
2(2 x-y-4 z=-7)-4 x-2 y-8 z=-1 \\
7 x-10 z=-11
\end{array}
$$

2.) choose two different equations and eliminate the same variable $\{y\}$

$$
\begin{aligned}
&-x+3 y+z=-10 \rightarrow-x+3 y+z z-10 \\
&\left.3(2 x-y-4 z=-7) \rightarrow \begin{array}{c}
\prime \\
6 x-3 y-12 z
\end{array}\right) \\
& 5 x-11 z=-31
\end{aligned}+\begin{aligned}
-x+3 y+z & =-10 \\
-7+3 y+6 & =-10 \\
3 y-1 & =-10 \\
3 y & =-9
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
x+y+z & =1 \\
x+3 y+7 z & =13 \\
x+2 y+3 z & =4
\end{aligned}
$$

1.) choose two equations and eliminate one variable

$$
\begin{array}{r}
-1[x+y+z=1]--x-y-z=-1 \\
x+3 y+7 z=13 \rightarrow \frac{x+3 y+7 z=13}{2 y+6 z=12}
\end{array}
$$

2.) choose two different equations and eliminate the same variable $\{x\}$

$$
\begin{array}{rc}
-1(x+3 y+7 z=13)-\rightarrow & -x-3 y-7 z=-13 \\
x+2 y+3 z=4-\rightarrow & \frac{x+2 y+3 z=4}{-y-4 z=-9}
\end{array}
$$

3.) use the two new equations to solve for a variable

$$
\begin{aligned}
2 y+6 z=12-\rightarrow 2 y+6 z & =12 \\
2(-y-4 z=-9) & \rightarrow \frac{-2 y-8 z}{}=-18 \\
\hline-2 z & =-6 \\
z & =3
\end{aligned}
$$

4.) keep substituting until all variables are solved for substitute $\mathbf{3}$ in for z , into any equation containing z and one other variable

$$
\begin{array}{r}
2 y+6 z=12 \\
2 y+6(3)=12 \\
2 y+18=12 \\
\mathbf{- 1 8}= \\
2 y=-6
\end{array}
$$

$$
\begin{aligned}
x+y+z & =1 \\
x+(-3)+3 & =1 \\
x & =1
\end{aligned}
$$

Any rebroadcast, reproduction, modification or other use of the work, presentations, and materials from this site without the express written consent of Mr. Sims, is prohibited. © Mr. Sims. All rights reserved.

